BP5131D

High Voltage Linear LED Driver

Description

BP5131D is a high current precision Linear LED Driver, integrated with High Voltage regulation switchers and JFET supply, specially designed for AC line LED strings forwarded with high voltage and low current.

In application, it supports a quite small BOM benefit from no ECAP and no Magnetics, compile with EMI and safety standard.

BP5131D can drive precision constant current by option of an external resistor, and set up the LED strings in group linear compile with THD performance. Typical 40mA LED current is optimized for 220V line voltage.

Features

- ♦ High integration, all SMTs in small size.
- ♦ No ECAPs and magnetics
- Integrated with 500V HV MOS, saved on safety components.
- Fast startup
- ◆ LED current set by external resistors with ±5% accuracy.
- On chip thermal regulation.
- Compensation for line regulation
- ♦ In TO252-3 package

Application

- ♦ GU10/E27 LED retrofit lamps
- LED candle
- ♦ Other LED lighting

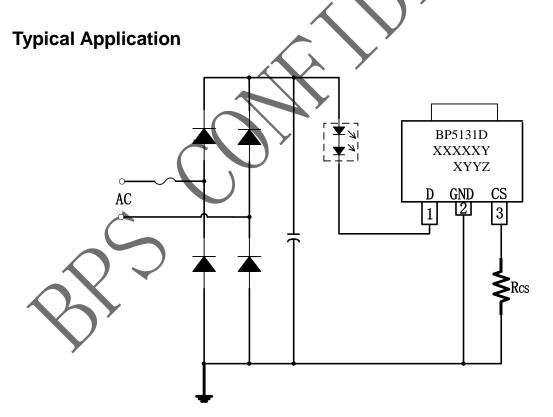


Fig.1 BP5131D Typical Application

Order Information

Part Number	Package	Temperature	Packing Method	Mark
BP5131DB	T0252-3	-40 ℃to115 ℃	Tape:2,500 pcs/reel	BP5131D
DESISIND	10202-3	-40 Ct0113 C	2 reels/box	XXXXXY XYYB
DDE101DC	T0050 0	40 °C+-405 °C	Tape:2,500 pcs/reel	BP5131D
BP5131DC	T0252-3	-40 ℃to125 ℃	2 reels/box	XXXXXY

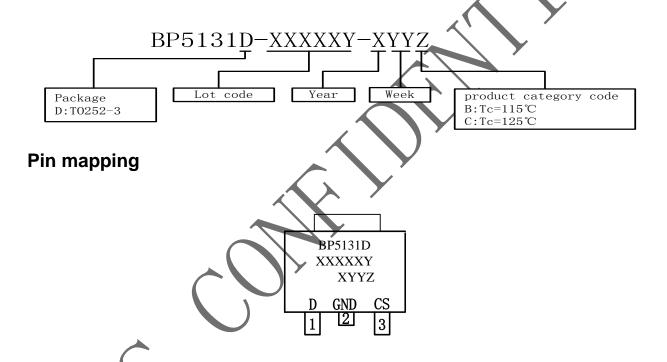


Fig 2 BP5131D Pin Mapping

Pin Descriptions

Pin No.	Pin Name	Descriptions		
1	D	Drain for LED string		
2	GND	IC ground		
3	CS	Current sense, connect the current sense resistor to GND		

BP5131D

High Voltage Linear LED Driver

Absolute Limit (Note1)

Symbol	Parameter	Range	Unit
D	500V HV interface	500	V
${ m I}_{ m D_MAX}$	Saturation current @ T _J _max	80	mA
CS	Low voltage pins	-0.3~6	V
P _{DMAX}	Power dissipation (note 2)	1.8	W
θЈΑ	Thermal Resistor	70	°C/W
TJ	Junction Temperature	-40 to 155	C
T _{STG}	Storage temperature range	-55 to 150	°C
	ESD (Note 3)	2	KV

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved. The electrical characteristics table defines the operation range of the device, the electrical characteristics is assured on DC and AC voltage by test program. For the parameters without minimum and maximum value in the EC table, the typical value defines the operation range, the accuracy is not guaranteed by spec.

Note 2: The maximum power dissipation decrease if temperature rise, it is decided by T_{JMAN} , θ_{JA} , and environment temperature (T_A) . The maximum power dissipation is the lower one between $P_{DMAN} = (T_{JMAN} - T_A)/\theta_{JA}$ and the number listed in the maximum table.

Note 3: Human Body mode, 100pF capacitor discharge on 1.5K Ω resistor

BP5131D

High Voltage Linear LED Driver

Electrical Characteristics (note4, 5) (unless specified, otherwise $T_A = 25 \text{ }^{\circ}\text{C}$)

Symbol	description	Test condition Min.		Тур.	Max.	UNIT	
Operation Cur	Operation Current						
Icc	Operation current	D=30V		90	160	uA	
Current Sense	Current Sense						
V _{REF}	Ref. for string1	D=30V, Rcs=120Ω		600	1	mV	
Thermal Regulation							
T _{REG}	Thermal Regulation	BP5131DB	.(140	Y	$^{\circ}$	
T _{REG}	Thermal Regulation	BP5131DC		150		${\mathbb C}$	

Note 4: Production testing of the chip is performed at 25 $^{\circ}$ C.

Note 5: The maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis

Block Diagram

High Voltage Linear LED Driver

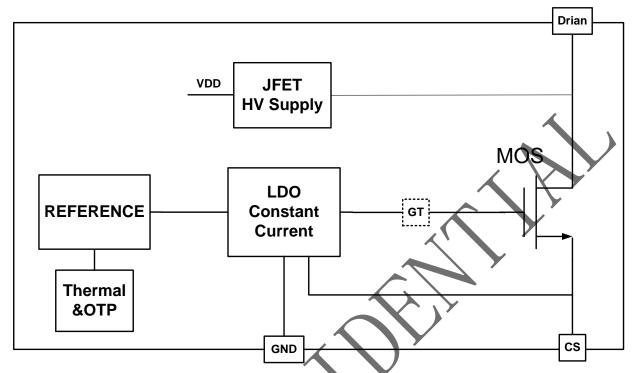


Fig3 BP5131D Block Diagram

Application Information

BP5131D is designed for linear driving LED strings with high forward voltage low LED current in line condition.

1 Supply

After system power on, the chip is supplied by JEFT through D, starting work once voltage on D above 10V.

2 Operation principle

BP5131D auto adjust the LED strings in working according to line voltage and extend the LED working slots in every main cycles with purpose of output Im maintenance and LED availability improvement. For different application, the forward voltage should match the input voltage to obtain higher efficiency, like 110V and 220V respectively.

3 Current configuration

BP5131D supports high precision LED current set by external resistors.

Current for LED string defined as:

$$I_{LED} = \frac{Vref}{Rcs}$$

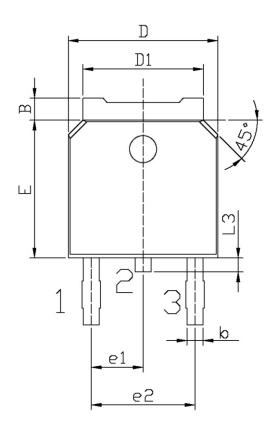
As recommended, in application case of 220V line condition, set the LED less than 40mA depend on thermal capability of heatsinking.

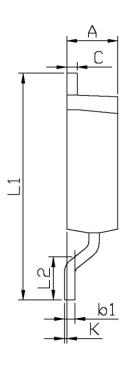
4 Thermal regulation

BP5131D has thermal regulation available on chip to balance the power delivering and temperature increasing. To improve the system reliability, the output current to be regulated lower down refer to the junction temperature.

High Voltage Linear LED Driver

5 PCB Layout design


Suggestion for BP5131D PCB layout:


GND: Use the trace for current sense resistor as short as possible. Extend the copper area for D Pin to improve good thermal condition.

Heat sinking: BP5131D adopted TO252-3 package to strengthen the thermal dissipation, so that extend thermal pad for further.

High Voltage Linear LED Driver

Package

单位: mm

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Millimeters		
	Min	Max	Зушоот	Min	Max	
A	2.20	2.40	Е	5. 95	6. 25	
В	0.95	1. 25	e1	2.24	2.34	
b	0.70	0. 90	e2	4. 43	4.73	
b1	0.45	0.55	L1	9. 85	10.35	
С	0.45	0.55	L2	1.70	2.00	
D	6. 45	6.75	L3	0.60	0.90	
D1	5.20	5. 40	K	0.00	0.10	