SLVS057D - AUGUST 1972 - REVISED JULY 1999

- 150-mA Load Current Without External Power Transistor
- Adjustable Current-Limiting Capability
- Input Voltages up to 40 V
- Output Adjustable From 2 V to 37 V
- Direct Replacement for Fairchild µA723C

#### description

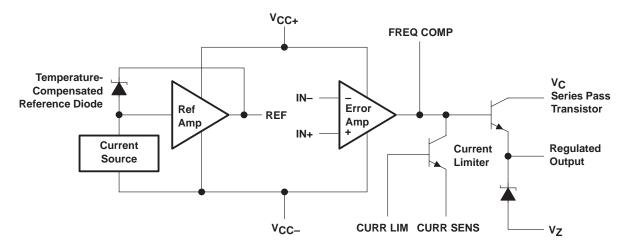
The  $\mu$ A723 is a precision integrated-circuit voltage regulator, featuring high ripple rejection,

NC **I**NC 14 CURR LIM 13 FREQ COMP 2 CURR SENS [] 3 12 🛛 V<sub>CC+</sub> Ιv<sub>c</sub>  $IN - \Pi 4$ 11 IN+ [ 10 5 REF 9 🛛 V<sub>Z</sub> 6 8 🛛 NC V<sub>CC</sub>-

D OR N PACKAGE (TOP VIEW)

excellent input and load regulation, excellent temperature stability, and low standby current. The circuit consists of a temperature-compensated reference-voltage amplifier, an error amplifier, a 150-mA output transistor, and an adjustable-output current limiter.

The  $\mu$ A723 is designed for use in positive or negative power supplies as a series, shunt, switching, or floating regulator. For output currents exceeding 150 mA, additional pass elements can be connected as shown in Figures 4 and 5.


The  $\mu$ A723C is characterized for operation from 0°C to 70°C.

|             | PACKAGE               | D DEVICES               | CHIP        |
|-------------|-----------------------|-------------------------|-------------|
| TA          | PLASTIC<br>DIP<br>(N) | SMALL<br>OUTLINE<br>(D) | FORM<br>(Y) |
| 0°C to 70°C | μA723CN               | μA723CD                 | μA723Y      |

AVAILABLE OPTIONS

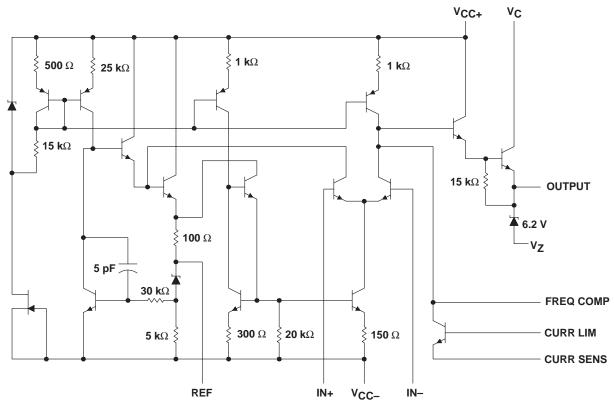
The D package is available taped and reeled. Add the suffix R to the device type (e.g.,  $\mu$ A723CDR). Chip forms are tested at 25°C.

#### functional block diagram





Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1999, Texas Instruments Incorporated

SLVS057D - AUGUST 1972 - REVISED JULY 1999

#### schematic



Resistor and capacitor values shown are nominal.

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Peak voltage from V <sub>CC+</sub> to V <sub>CC-</sub> ( $t_w \le 50$ ms)    | 50 V       |
|------------------------------------------------------------------------------|------------|
| Continuous voltage from V <sub>CC+</sub> to V <sub>CC-</sub>                 | 40 V       |
| Input-to-output voltage differential                                         | 40 V       |
| Differential input voltage to error amplifier                                | ±5 V       |
| Voltage between noninverting input and V <sub>CC</sub>                       |            |
| Current from V <sub>Z</sub>                                                  |            |
| Current from REF                                                             |            |
| Package thermal impedance, $\theta_{JA}$ (see Notes 1 and 2): D package      | 86°C/W     |
| N package                                                                    | . 101°C/W  |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package | 260°C      |
| Storage temperature range, T <sub>stg</sub> 65°                              | C to 150°C |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) - T_A)/\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can impact reliability.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.



## recommended operating conditions

|                                                      |        | MIN | MAX | UNIT |
|------------------------------------------------------|--------|-----|-----|------|
| Input voltage, V <sub>I</sub>                        |        | 9.5 | 40  | V    |
| Output voltage, VO                                   |        | 2   | 37  | V    |
| Input-to-output voltage differential, $V_C - V_O$    |        | 3   | 38  | V    |
| Output current, IO                                   |        |     | 150 | mA   |
| Operating free-air temperature range, T <sub>A</sub> | μA723C | 0   | 70  | °C   |

#### electrical characteristics at specified free-air temperature (see Notes 3 and 4)

| PARAMETER                                 | TEST CONDIT                                 |                       | ТА          | ļ   | UNIT  |       |           |
|-------------------------------------------|---------------------------------------------|-----------------------|-------------|-----|-------|-------|-----------|
| PARAMETER                                 | TEST CONDIT                                 | TEST CONDITIONS       |             |     | TYP   | MAX   | UNIT      |
|                                           | $V_I = 12 V$ to $V_I = 15 V$                |                       | 25°C        |     | 0.1   | 1     |           |
| Input regulation                          | $V_I = 12 \text{ V to } V_I = 40 \text{ V}$ |                       | 25°C        |     | 1     | 5     | mV/V      |
|                                           | $V_I = 12 \text{ V to } V_I = 15 \text{ V}$ |                       | 0°C to 70°C |     |       | 3     |           |
| Ripple rejection                          | f = 50 Hz to 10 kHz,                        | $C_{ref} = 0$         | 25°C        |     | 74    |       | dB        |
| Ripple rejection                          | f = 50 Hz to 10 kHz,                        | $C_{ref} = 5 \ \mu F$ | 25°C        |     | 86    |       | uБ        |
| Output regulation                         |                                             |                       | 25°C        |     | -0.3  | -2    | mV/V      |
|                                           |                                             |                       | 0°C to 70°C |     |       | -6    | 111 V / V |
| Reference voltage, V <sub>ref</sub>       |                                             |                       | 25°C        | 6.8 | 7.15  | 7.5   | V         |
| Standby current                           | V <sub>I</sub> = 30 V,                      | I <sub>O</sub> = 0    | 25°C        |     | 2.3   | 4     | mA        |
| Temperature coefficient of output voltage |                                             |                       | 0°C to 70°C |     | 0.003 | 0.015 | %/°C      |
| Short-circuit output current              | R <sub>SC</sub> = 10 Ω,                     | VO = 0                | 25°C        |     | 65    |       | mA        |
|                                           | BW = 100 Hz to 10 kHz,                      | C <sub>ref</sub> = 0  | 25°C        |     | 20    |       |           |
| Output noise voltage                      | BW = 100 Hz to 10 kHz,                      | $C_{ref} = 5 \ \mu F$ | 25°C        |     | 2.5   |       | μV        |

NOTES: 3. For all values in this table, the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier  $\leq 10 \text{ k}\Omega$ . Unless otherwise specified,  $V_I = V_{CC+} = V_C = 12 \text{ V}$ ,  $V_{CC-} = 0$ ,  $V_O = 5 \text{ V}$ ,  $I_O = 1 \text{ mA}$ ,  $R_{SC} = 0$ , and  $C_{ref} = 0$ .

4. Pulse-testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

## electrical characteristics, $T_A = 25^{\circ}C$ (see Notes 3 and 4)

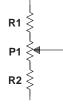
| PARAMETER                           | TEST CONDIT                             | TEST CONDITIONS         |     |      |  |          |  |
|-------------------------------------|-----------------------------------------|-------------------------|-----|------|--|----------|--|
| PARAMETER                           | TEST CONDIT                             |                         |     |      |  |          |  |
| Input regulation                    | $V_I = 12 V$ to $V_I = 15 V$            |                         | 0.1 |      |  | mV/V     |  |
|                                     | $V_{I} = 12 V \text{ to } V_{I} = 40 V$ |                         |     | 1    |  | 111 V/ V |  |
| Pipple rejection                    | f = 50 Hz to 10 kHz,                    | C <sub>ref</sub> = 0    | 74  |      |  | dB       |  |
| Ripple rejection                    | f = 50 Hz to 10 kHz,                    | C <sub>ref</sub> = 5 μF | 86  |      |  | чъ       |  |
| Output regulation                   |                                         |                         |     | -0.3 |  | mV/V     |  |
| Reference voltage, V <sub>ref</sub> |                                         |                         |     | 7.15 |  | V        |  |
| Standby current                     | V <sub>I</sub> = 30 V,                  | IO = 0                  |     | 2.3  |  | mA       |  |
| Short-circuit output current        | R <sub>SC</sub> = 10 Ω,                 | VO = 0                  |     | 65   |  | mA       |  |
| Output noise voltage                | BW = 100 Hz to 10 kHz,                  | C <sub>ref</sub> = 0    |     | 20   |  | μV       |  |
|                                     | BW = 100 Hz to 10 kHz,                  | $C_{ref} = 5 \ \mu F$   |     | 2.5  |  | μv       |  |

NOTES: 3. For all values in this table, the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier  $\leq$  10 k $\Omega$ . Unless otherwise specified, V<sub>I</sub> = V<sub>CC+</sub> = V<sub>C</sub> = 12 V, V<sub>CC-</sub> = 0, V<sub>O</sub> = 5 V, I<sub>O</sub> = 1 mA, R<sub>SC</sub> = 0, and C<sub>ref</sub> = 0.

4. Pulse-testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.



SLVS057D - AUGUST 1972 - REVISED JULY 1999


| OUTPUT<br>VOLTAGE  | APPLICABLE<br>FIGURES  | FIXED C<br>±5 | OUTPUT<br>%       |                   | IT ADJUS<br>±10%<br>EE NOTE |                   |
|--------------------|------------------------|---------------|-------------------|-------------------|-----------------------------|-------------------|
| (V)                | (SEE NOTE 5)           | R1<br>(kΩ)    | <b>R2</b><br>(kΩ) | <b>R1</b><br>(kΩ) | <b>Ρ1</b><br>(kΩ )          | <b>Ρ2</b><br>(kΩ) |
| 3.0                | 1, 5, 6, 9, 11, 12 (4) | 4.12          | 3.01              | 1.8               | 0.5                         | 1.2               |
| 3.6                | 1, 5, 6, 9, 11, 12 (4) | 3.57          | 3.65              | 1.5               | 0.5                         | 1.5               |
| 5.0                | 1, 5, 6, 9, 11, 12 (4) | 2.15          | 4.99              | 0.75              | 0.5                         | 2.2               |
| 6.0                | 1, 5, 6, 9, 11, 12 (4) | 1.15          | 6.04              | 0.5               | 0.5                         | 2.7               |
| 9.0                | 2, 4, (5, 6, 9, 12)    | 1.87          | 7.15              | 0.75              | 1.0                         | 2.7               |
| 12                 | 2, 4, (5, 6, 9, 12)    | 4.87          | 7.15              | 2.0               | 1.0                         | 3.0               |
| 15                 | 2, 4, (5, 6, 9, 12)    | 7.87          | 7.15              | 3.3               | 1.0                         | 3.0               |
| 28                 | 2, 4, (5, 6, 9, 12)    | 21.0          | 7.15              | 5.6               | 1.0                         | 2.0               |
| 45                 | 7                      | 3.57          | 48.7              | 2.2               | 10                          | 39                |
| 75                 | 7                      | 3.57          | 78.7              | 2.2               | 10                          | 68                |
| 100                | 7                      | 3.57          | 105               | 2.2               | 10                          | 91                |
| 250                | 7                      | 3.57          | 255               | 2.2               | 10                          | 240               |
| -6<br>(see Note 7) | 3, 10                  | 3.57          | 2.43              | 1.2               | 0.5                         | 0.75              |
| -9                 | 3, 10                  | 3.48          | 5.36              | 1.2               | 0.5                         | 2.0               |
| -12                | 3, 10                  | 3.57          | 8.45              | 1.2               | 0.5                         | 3.3               |
| -15                | 3, 10                  | 3.57          | 11.5              | 1.2               | 0.5                         | 4.3               |
| -28                | 3, 10                  | 3.57          | 24.3              | 1.2               | 0.5                         | 10                |
| -45                | 8                      | 3.57          | 41.2              | 2.2               | 10                          | 33                |
| -100               | 8                      | 3.57          | 95.3              | 2.2               | 10                          | 91                |
| -250               | 8                      | 3.57          | 249               | 2.2               | 10                          | 240               |

# Table 1. Resistor Values (k $\Omega$ ) for Standard Output Voltages

**APPLICATION INFORMATION** 

NOTES: 5. The R1/R2 divider can be across either V<sub>O</sub> or V<sub>(ref)</sub>. If the divider is across  $V_{(ref)}$ , use the figure numbers without parentheses. If the divider is across V<sub>O</sub>, use the figure numbers in parentheses.

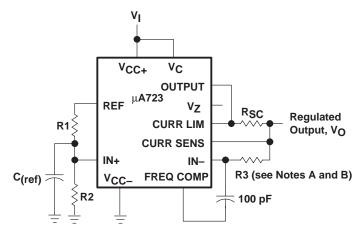
V<sub>O</sub>, use the figure numbers in parentheses.
6. To make the voltage adjustable, the R1/R2 divider shown in the figures must be replaced by the divider shown below.



#### Adjustable Output Circuit

7. For Figures 3, 8, and 10, the device requires a minimum of 9 V between V<sub>CC+</sub> and V<sub>CC-</sub> when V<sub>O</sub> is equal to or more positive than -9 V.



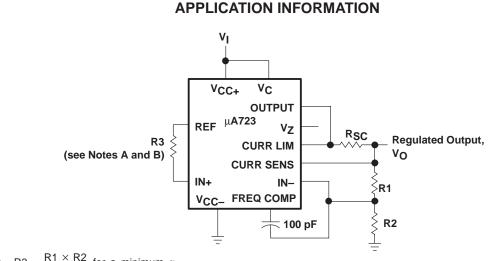

### **APPLICATION INFORMATION**

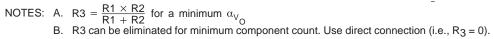
#### Table 2. Formulas for Intermediate Output Voltages

| OUTPUTS FROM 2 V TO 7 V<br>SEE FIGURES 1, 5, 6, 9, 11, 12 (4)<br>AND NOTE 5   | OUTPUTS FROM 4 V TO 250 V<br>SEE FIGURE 7 AND NOTE 5                     | CURRENT LIMITING                                                                                                                            |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{O} = V_{(ref)} \times \frac{R2}{R1 + R2}$                                 | $V_{O} = \frac{V_{(ref)}}{2} \times \frac{R2 - R1}{R1}$<br>R3 = R4       | $I_{(limit)} \approx \frac{0.65 \text{ V}}{\text{R}_{\text{SC}}}$                                                                           |
| OUTPUTS FROM 7 V TO 37 V<br>SEE FIGURES 2, 4, (5, 6, 9, 11, 12)<br>AND NOTE 5 | OUTPUTS FROM –6 V TO –250 V<br>SEE FIGURES 3, 8, 10<br>AND NOTES 5 AND 7 | FOLDBACK CURRENT LIMITING<br>SEE FIGURE 6                                                                                                   |
| $V_{O} = V_{(ref)} \times \frac{R1 + R2}{R2}$                                 | $V_{O} = -\frac{V_{(ref)}}{2} \times \frac{R1 + R2}{R1}$<br>R3 = R4      | $I_{(knee)} \approx \frac{V_0 R3 + (R3 + R4) \ 0.65 \ V}{R_{SC} R4}$ $I_{OS} \approx \frac{0.65 \ V}{R_{SC}} \ \times \ \frac{R3 + R4}{R4}$ |

NOTES: 5. The R1/R2 divider can be across either VO or V(ref). If the divider is across V(ref), use figure numbers without parentheses. If the divider is across  $V_{O}$ , use the figure numbers in parentheses.

7. For Figures 3, 8, and 10, the device requires a minimum of 9 V between V<sub>CC+</sub> and V<sub>CC-</sub> when V<sub>O</sub> is equal to or more positive than -9 V.





NOTES: A. R3 =  $\frac{R1 \times R2}{R1 + R2}$  for a minimum  $\alpha_{V_0}$ B. R3 can be eliminated for minimum component count. Use direct connection (i.e., R<sub>3</sub> = 0).

## Figure 1. Basic Low-Voltage Regulator ( $V_0 = 2 V \text{ to } 7 V$ )



SLVS057D - AUGUST 1972 - REVISED JULY 1999







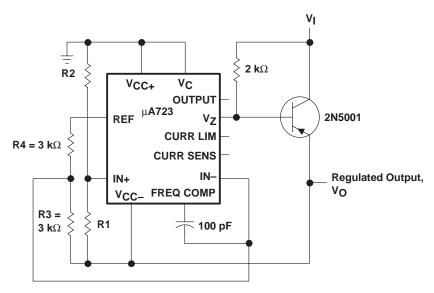



Figure 3. Negative-Voltage Regulator



SLVS057D - AUGUST 1972 - REVISED JULY 1999

#### **APPLICATION INFORMATION**

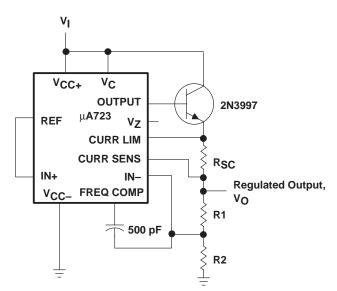



Figure 4. Positive-Voltage Regulator (External npn Pass Transistor)

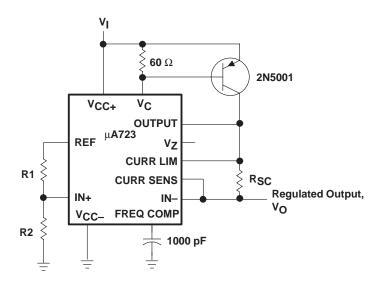



Figure 5. Positive-Voltage Regulator (External pnp Pass Transistor)



SLVS057D - AUGUST 1972 - REVISED JULY 1999



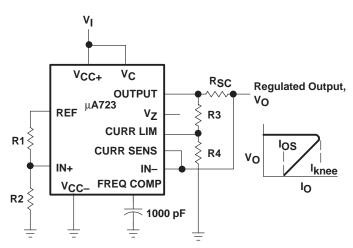



Figure 6. Foldback Current Limiting

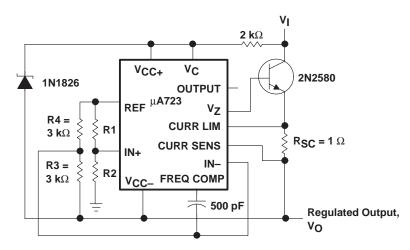



Figure 7. Positive Floating Regulator



SLVS057D - AUGUST 1972 - REVISED JULY 1999

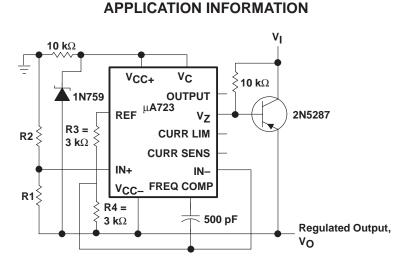
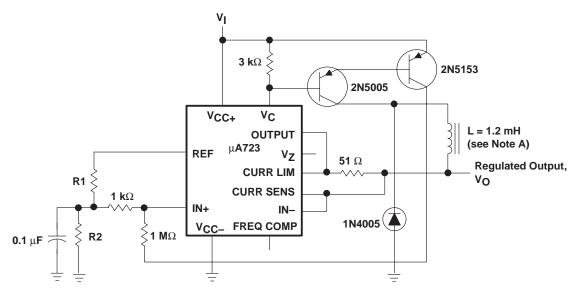
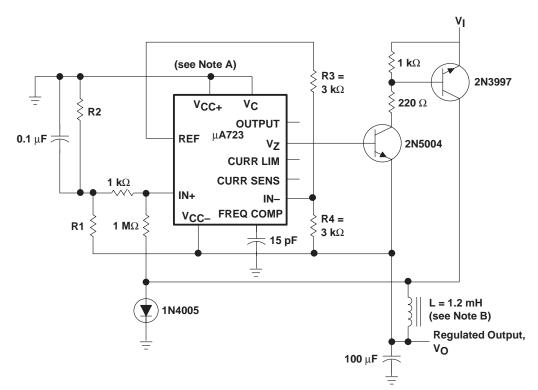



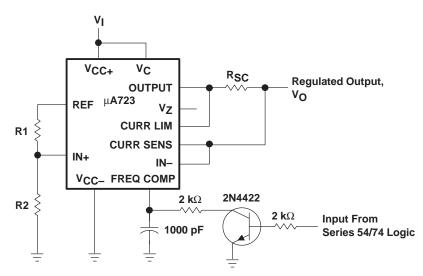

Figure 8. Negative Floating Regulator




NOTE A: L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core, or equivalent, with a 0.009-inch air gap.

Figure 9. Positive Switching Regulator




SLVS057D - AUGUST 1972 - REVISED JULY 1999



**APPLICATION INFORMATION** 

NOTES: A. The device requires a minimum of 9 V between V<sub>CC+</sub> and V<sub>CC-</sub> when V<sub>O</sub> is equal to or more positive than -9 V.
B. L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core, or equivalent, with a 0.009-inch air gap.

Figure 10. Negative Switching Regulator



NOTE A: A current-limiting transistor can be used for shutdown if current limiting is not required.

Figure 11. Remote Shutdown Regulator With Current Limiting



# $\mu \text{A723} \\ \textbf{PRECISION VOLTAGE REGULATORS} \\$

SLVS057D - AUGUST 1972 - REVISED JULY 1999

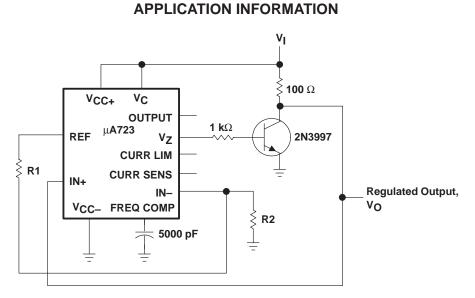



Figure 12. Shunt Regulator





10-Jun-2014

## PACKAGING INFORMATION

| Orderable Device | Status   | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|----------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|--------------|-------------------------|---------|
| UA723CD          | ACTIVE   | SOIC         | D                  | 14   | 50             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723C                  | Samples |
| UA723CDE4        | ACTIVE   | SOIC         | D                  | 14   | 50             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723C                  | Samples |
| UA723CDG4        | ACTIVE   | SOIC         | D                  | 14   | 50             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723C                  | Samples |
| UA723CDR         | ACTIVE   | SOIC         | D                  | 14   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723C                  | Samples |
| UA723CDRE4       | ACTIVE   | SOIC         | D                  | 14   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723C                  | Samples |
| UA723CDRG4       | ACTIVE   | SOIC         | D                  | 14   | 2500           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723C                  | Samples |
| UA723CJ          | OBSOLETE | CDIP         | J                  | 14   |                | TBD                        | Call TI                 | Call TI            |              |                         |         |
| UA723CN          | ACTIVE   | PDIP         | Ν                  | 14   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | 0 to 70      | UA723CN                 | Samples |
| UA723CNE4        | ACTIVE   | PDIP         | N                  | 14   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU               | N / A for Pkg Type | 0 to 70      | UA723CN                 | Samples |
| UA723CNSR        | ACTIVE   | SO           | NS                 | 14   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | 0 to 70      | UA723                   | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)



10-Jun-2014

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

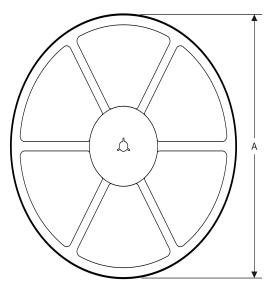
<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

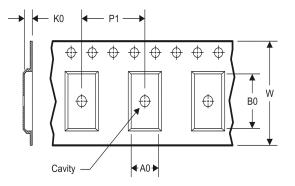
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION


www.ti.com

## TAPE AND REEL INFORMATION

#### REEL DIMENSIONS


TEXAS INSTRUMENTS



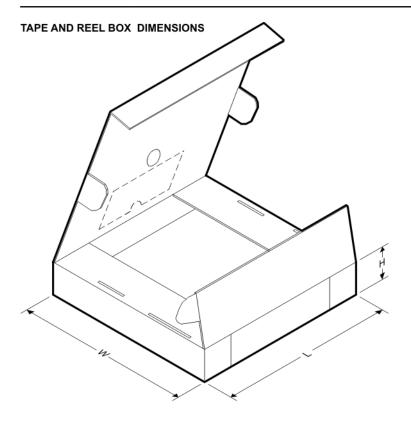


TAPE AND REEL INFORMATION

#### TAPE DIMENSIONS



| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


| *All dimensions are nominal |                 |                    |      |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| UA723CDR                    | SOIC            | D                  | 14   | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| UA723CNSR                   | SO              | NS                 | 14   | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

14-Jul-2012



\*All dimensions are nominal

| Device    | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------|--------------|-----------------|------|------|-------------|------------|-------------|
| UA723CDR  | SOIC         | D               | 14   | 2500 | 367.0       | 367.0      | 38.0        |
| UA723CNSR | SO           | NS              | 14   | 2000 | 367.0       | 367.0      | 38.0        |

J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

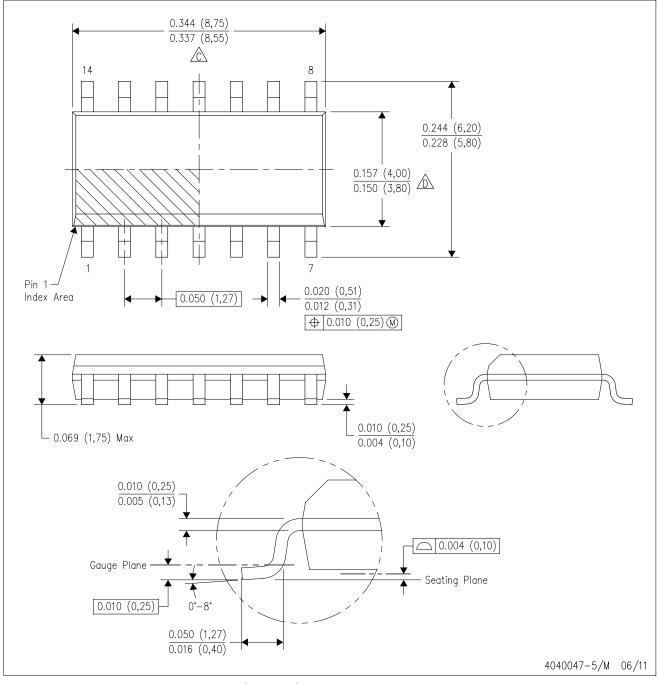
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

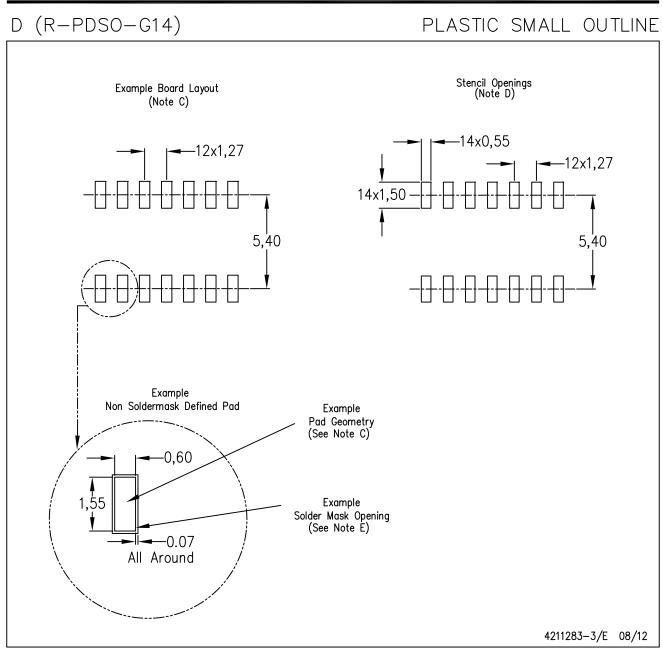



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



D (R-PDSO-G14)


PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.





NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
   E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



## MECHANICAL DATA

## PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ctivity                       |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated